Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancers (Basel) ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36612305

RESUMO

The p53 tumor suppressor is a central protein in the fight against cancer [...].

2.
Viruses ; 14(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36298819

RESUMO

When human TDP-43 is overexpressed in yeast it is toxic and forms cytoplasmic aggregates. The mechanism of this toxicity is unknown. Genetic screens for TDP-43 toxicity modifiers in the yeast system previously identified proteins, including PBP1, that enhance TDP-43 toxicity. The determination in yeast that deletion of PBP1 reduces TDP-43 toxicity while overexpression enhances toxicity, led to the discovery that its human homolog, ATXN2, is associated with ALS risk. Thus, the yeast system has relevance to human disease. We now show that deletion of a new yeast gene, tip41Δ, likewise suppresses TDP-43 toxicity. We also found that TDP-43 overexpression and toxicity is associated with reduced autophagy. This is consistent with findings in other systems that increasing autophagy reduces TDP-43 toxicity and is in contrast to a report of enhanced autophagy when TDP-43 was overexpressed in yeast. Interestingly, we found that deletions of PBP1 and TIP41, which reduced TDP-43 toxicity, eliminated TDP-43's inhibition of autophagy. This suggests that toxicity of TDP-43 expressed in yeast is in part due to its inhibition of autophagy and that deletions of PBP1 and TIP41 may reduce TDP-43 toxicity by preventing TDP-43 from inhibiting autophagy.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Autofagia/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
RNA Biol ; 18(11): 1546-1554, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33427561

RESUMO

Pathological changes involving TDP-43 protein ('TDP-43 proteinopathy') are typical for several neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). FTLD-TDP cases are characterized by increased binding of TDP-43 to an abundant lncRNA, NEAT1, in the cortex. However it is unclear whether enhanced TDP-43-NEAT1 interaction represents a protective mechanism. We show that accumulation of human TDP-43 leads to upregulation of the constitutive NEAT1 isoform, NEAT1_1, in cultured cells and in the brains of transgenic mice. Further, we demonstrate that overexpression of NEAT1_1 ameliorates TDP-43 toxicity in Drosophila and yeast models of TDP-43 proteinopathy. Thus, NEAT1_1 upregulation may be protective in TDP-43 proteinopathies affecting the brain. Approaches to boost NEAT1_1 expression in the CNS may prove useful in the treatment of these conditions.


Assuntos
Esclerose Lateral Amiotrófica/prevenção & controle , Encéfalo/metabolismo , Proteínas de Ligação a DNA/toxicidade , Demência Frontotemporal/prevenção & controle , Neuroblastoma/prevenção & controle , RNA Longo não Codificante/genética , Proteinopatias TDP-43/prevenção & controle , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila melanogaster , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroblastoma/etiologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA Longo não Codificante/administração & dosagem , Saccharomyces cerevisiae , Proteinopatias TDP-43/etiologia , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
4.
iScience ; 24(1): 102000, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490908

RESUMO

Mutations in the p53 tumor suppressor are frequent causes of cancer. Because p53 aggregates appear in some tumor cells, it has been suggested that p53 could also cause cancer by forming self-replicating protein aggregates (prions). Here, using yeast, we show that transient p53 overexpression induced the formation of p53 prion aggregates that were transmitted for >100 generations, found in lysate pellets, stained with Thioflavin T, and transmitted by cytoplasmic transfer, or transfection with lysates of cells carrying the prion or with p53 amyloid peptide. As predicted for a prion, transient interruption of p53 expression caused permanent p53 prion loss. Importantly, p53 transcription factor activity was reduced by prion formation suggesting that prion aggregation could cause cancer. p53 has also been found in liquid-like nuclear droplets in animal cell culture. In yeast, we found that liquid-like p53 foci appear in response to stress and disappear with stress removal.

5.
PLoS Genet ; 15(8): e1008308, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31390360

RESUMO

Proteins associated with familial neurodegenerative disease often aggregate in patients' neurons. Several such proteins, e.g. TDP-43, aggregate and are toxic when expressed in yeast. Deletion of the ATXN2 ortholog, PBP1, reduces yeast TDP-43 toxicity, which led to identification of ATXN2 as an amyotrophic lateral sclerosis (ALS) risk factor and therapeutic target. Likewise, new yeast neurodegenerative disease models could facilitate identification of other risk factors and targets. Mutations in SS18L1, encoding the calcium-responsive transactivator (CREST) chromatin-remodeling protein, are associated with ALS. We show that CREST is toxic in yeast and forms nuclear and occasionally cytoplasmic foci that stain with Thioflavin-T, a dye indicative of amyloid-like protein. Like the yeast chromatin-remodeling factor SWI1, CREST inhibits silencing of FLO genes. Toxicity of CREST is enhanced by the [PIN+] prion and reduced by deletion of the HSP104 chaperone required for the propagation of many yeast prions. Likewise, deletion of PBP1 reduced CREST toxicity and aggregation. In accord with the yeast data, we show that the Drosophila ortholog of human ATXN2, dAtx2, is a potent enhancer of CREST toxicity. Downregulation of dAtx2 in flies overexpressing CREST in retinal ganglion cells was sufficient to largely rescue the severe degenerative phenotype induced by human CREST. Overexpression caused considerable co-localization of CREST and PBP1/ATXN2 in cytoplasmic foci in both yeast and mammalian cells. Thus, co-aggregation of CREST and PBP1/ATXN2 may serve as one of the mechanisms of PBP1/ATXN2-mediated toxicity. These results extend the spectrum of ALS associated proteins whose toxicity is regulated by PBP1/ATXN2, suggesting that therapies targeting ATXN2 may be effective for a wide range of neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Ataxina-2/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Animais Geneticamente Modificados , Ataxina-2/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Príons/metabolismo , Células Ganglionares da Retina/patologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética
6.
J Mol Biol ; 431(10): 2050-2059, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30905713

RESUMO

The trans-activating response DNA-binding protein 43 (TDP-43) is a transcriptional repressor and splicing factor. TDP-43 is normally mostly in the nucleus, although it shuttles to the cytoplasm. Mutations in TDP-43 are one cause of familial amyotrophic lateral sclerosis. In neurons of these patients, TDP-43 forms cytoplasmic aggregates. In addition, wild-type TDP-43 is also frequently found in neuronal cytoplasmic aggregates in patients with neurodegenerative diseases not caused by TDP-43 mutations. TDP-43 expressed in yeast causes toxicity and forms cytoplasmic aggregates. This disease model has been validated because genetic modifiers of TDP-43 toxicity in yeast have led to the discovery that their conserved genes in humans are amyotrophic lateral sclerosis genetic risk factors. While how TDP-43 is associated with toxicity is unknown, several studies find that TDP-43 alters mitochondrial function. We now report that TDP-43 is much more toxic when yeast are respiring than when grown on a carbon source where respiration is inhibited. However, respiration is not the unique target of TDP-43 toxicity because we found that TDP-43 retains some toxicity even in the absence of respiration. We found that H2O2 increases the toxicity of TDP-43, suggesting that the reactive oxygen species associated with respiration could likewise enhance the toxicity of TDP-43. In this case, the TDP-43 toxicity targets in the presence or absence of respiration could be identical, with the reactive oxygen species produced by respiration activating TDP-43 to become more toxic or making TDP-43 targets more vulnerable.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Agregação Patológica de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Respiração Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Agregados Proteicos , Saccharomyces cerevisiae/citologia
7.
Prion ; 12(1): 16-22, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29308690

RESUMO

TDP-43 and FUS are DNA/RNA binding proteins associated with neuronal inclusions in amyotrophic lateral sclerosis (ALS) patients. Other neurodegenerative diseases are also characterized by neuronal protein aggregates, e.g. Huntington's disease, associated with polyglutamine (polyQ) expansions in the protein huntingtin. Here we discuss our recent paper establishing similarities between aggregates of TDP-43 that have short glutamine and asparagine (Q/N)-rich modules and are soluble in detergents, with those of polyQ and PIN4C that have large Q/N-rich domains and are detergent-insoluble. We also present new, similar data for FUS. Together, we show that like overexpression of polyQ or PIN4C, overexpression of FUS or TDP-43 causes inhibition of the ubiquitin proteasome system (UPS) and toxicity, both of which are mitigated by overexpression of the Hsp40 chaperone Sis1. Also, in all cases toxicity is enhanced by the [PIN+] prion. In addition, we show that the Sis1 mammalian homolog DNAJBI reduces toxicity arising from overexpressed FUS and TDP-43 respectively in human embryonic kidney cells and primary rodent neurons. The common properties of these proteins suggest that heterologous aggregates may enhance the toxicity of a variety of disease-related aggregating proteins, and further that chaperones and the UPS may be key therapeutic targets for diseases characterized by protein inclusions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Animais , Asparagina/metabolismo , Proteínas de Ligação a DNA/genética , Glutamina/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Humanos , Neurônios/metabolismo , Peptídeos/metabolismo , Príons/metabolismo , Agregados Proteicos , Proteína FUS de Ligação a RNA/genética , Ubiquitina/metabolismo , Leveduras
8.
PLoS Genet ; 13(5): e1006805, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28531192

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43's effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP40/genética , Neurônios/metabolismo , Ligação Proteica , Ratos , Ratos Long-Evans , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo
9.
Microb Cell ; 3(2): 53-64, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28357335

RESUMO

The formation of small Aß42 oligomers has been implicated as a toxic species in Alzheimer disease (AD). In strong support of this hypothesis we found that overexpression of Yap1802, the yeast ortholog of the human AD risk factor, phosphatidylinositol binding clathrin assembly protein (PICALM), reduced oligomerization of Aß42 fused to a reporter in yeast. Thus we used the Aß42-reporter system to identify drugs that could be developed into therapies that prevent or arrest AD. From a screen of 1,200 FDA approved drugs and drug-like small compounds we identified 7 drugs that reduce Aß42 oligomerization in yeast: 3 antipsychotics (bromperidol, haloperidol and azaperone), 2 anesthetics (pramoxine HCl and dyclonine HCl), tamoxifen citrate, and minocycline HCl. Also, all 7 drugs caused Aß42 to be less toxic to PC12 cells and to relieve toxicity of another yeast AD model in which Aß42 aggregates targeted to the secretory pathway are toxic. Our results identify drugs that inhibit Aß42 oligomers from forming in yeast. It remains to be determined if these drugs inhibit Aß42 oligomerization in mammals and could be developed as a therapeutic treatment for AD.

10.
PLoS Genet ; 11(1): e1004814, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25568955

RESUMO

Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI+][PIN+] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI+], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI+]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN+]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI+], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN+]-independent pathway.


Assuntos
Doenças Priônicas/genética , Príons/genética , Agregados Proteicos/genética , Vacúolos/genética , Asparagina/genética , Citoplasma , Glutamina/genética , Chaperonas Moleculares/genética , Doenças Priônicas/patologia , Príons/metabolismo , Conformação Proteica , Saccharomyces cerevisiae , Vacúolos/metabolismo
11.
Dis Model Mech ; 4(6): 822-31, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21810907

RESUMO

Recent reports point to small soluble oligomers, rather than insoluble fibrils, of amyloid ß (Aß), as the primary toxic species in Alzheimer's disease. Previously, we developed a low-throughput assay in yeast that is capable of detecting small Aß(42) oligomer formation. Specifically, Aß(42) fused to the functional release factor domain of yeast translational termination factor, Sup35p, formed sodium dodecyl sulfate (SDS)-stable low-n oligomers in living yeast, which impaired release factor activity. As a result, the assay for oligomer formation uses yeast growth to indicate restored release factor activity and presumably reduced oligomer formation. We now describe our translation of this assay into a high-throughput screen (HTS) for anti-oligomeric compounds. By doing so, we also identified two presumptive anti-oligomeric compounds from a sub-library of 12,800 drug-like small molecules. Subsequent biochemical analysis confirmed their anti-oligomeric activity, suggesting that this form of HTS is an efficient, sensitive and cost-effective approach to identify new inhibitors of Aß(42) oligomerization.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Polimerização , Estrutura Quaternária de Proteína/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Peptídeos beta-Amiloides/química , Eletroforese em Gel de Poliacrilamida , Modelos Biológicos , Fragmentos de Peptídeos/química , Projetos Piloto , Estrutura Terciária de Proteína/efeitos dos fármacos , Reprodutibilidade dos Testes
12.
Mol Biol Cell ; 22(19): 3634-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813735

RESUMO

The TRAPP complexes are multimeric guanine exchange factors (GEFs) for the Rab GTPase Ypt1p. The three complexes (TRAPPI, TRAPPII, and TRAPPIII) share a core of common subunits required for GEF activity, as well as unique subunits (Trs130p, Trs120p, Trs85p, and Trs65p) that redirect the GEF from the endoplasmic reticulum-Golgi pathway to different cellular locations where TRAPP mediates distinct membrane trafficking events. Roles for three of the four unique TRAPP subunits have been described before; however, the role of the TRAPPII-specific subunit Trs65p has remained elusive. Here we demonstrate that Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p and provide in vivo evidence that this interaction is physiologically relevant. Gea2p and TRAPPII also bind to the yeast orthologue of the γ subunit of the COPI coat complex (Sec21p), a known Arf1p effector. These and previous findings reveal that TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes. In support of this proposal, we show that TRAPPII is more soluble in an arf1Δ mutant.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo , Fator 1 de Ribosilação do ADP/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Ligação Proteica , Transporte Proteico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
13.
Mol Biol Cell ; 16(8): 3786-99, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15930122

RESUMO

We have identified an important functional region of the yeast Arf1 activator Gea2p upstream of the catalytic Sec7 domain and characterized a set of temperature-sensitive (ts) mutants with amino acid substitutions in this region. These gea2-ts mutants block or slow transport of proteins traversing the secretory pathway at exit from the endoplasmic reticulum (ER) and the early Golgi, and accumulate both ER and early Golgi membranes. No defects in two types of retrograde trafficking/sorting assays were observed. We find that a substantial amount of COPI is associated with Golgi membranes in the gea2-ts mutants, even after prolonged incubation at the nonpermissive temperature. COPI in these mutants is released from Golgi membranes by brefeldin A, a drug that binds directly to Gea2p and blocks Arf1 activation. Our results demonstrate that COPI function in sorting of at least three retrograde cargo proteins within the Golgi is not perturbed in these mutants, but that forward transport is severely inhibited. Hence this region of Gea2p upstream of the Sec7 domain plays a role in anterograde transport that is independent of its role in recruiting COPI for retrograde transport, at least of a subset of Golgi-ER cargo.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Membrana Celular/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Vetores Genéticos/genética , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
14.
J Cell Sci ; 117(Pt 5): 711-22, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14734650

RESUMO

Arf GTPases regulate both the morphological and protein sorting events that are essential for membrane trafficking. Guanine nucleotide exchange factors (GEFs) specific for Arf proteins determine when and where Arf GTPases will be activated in cells. The yeast Gea2p Arf GEF is a member of an evolutionarily conserved family of high molecular mass Arf GEFs that are peripherally associated with membranes. Nothing is known about how these proteins are localized to membranes, and few direct binding partners have been identified. In yeast, Gea2p has been implicated in trafficking through the Golgi apparatus and in maintaining Golgi structure. A major function of the Golgi apparatus is the packaging of cargo into secretory granules or vesicles. This process occurs through a series of membrane transformation events starting with fenestration of a saccular membrane, and subsequent remodeling of the fenestrated membrane into a mesh-like tubular network. Concentration of secretory cargo into nodes of the tubular network leads to enlargement of the nodes, which correspond to forming vesicles/granules, and thinning of the surrounding tubules. The tubules eventually break to release the secretory vesicles/granules into the cytoplasm. This process is highly conserved at the morphological level from yeast to mammalian cells. Drs2p, a multi-span transmembrane domain protein and putative aminophospholipid translocase, is required for the formation of a class of secretory granules/vesicles in yeast. Here we show that Drs2p interacts directly with Gea2p, both in vitro and in vivo. We mapped the domain of interaction of Drs2p to a 20-amino-acid region of the C-terminal cytoplasmic tail of the protein, adjacent to a region essential for Drs2p function. Mutations in Gea2p that abolish interaction with Drs2p are clustered in the C-terminal third of the Sec7 domain, and are important for Gea2p function. We characterize one such mutant that has a thermosensitive phenotype, and show that it has morphological defects along the secretory pathway in the formation of secretory granules/vesicles.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , ATPases Transportadoras de Cálcio/genética , Complexo de Golgi/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Dados de Sequência Molecular , Mutação Puntual/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
15.
Mol Microbiol ; 47(4): 1015-27, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12581356

RESUMO

To further our understanding of inner membrane protein (IMP) biogenesis in Escherichia coli, we have accomplished the widest in vivo IMP assembly screen so far. The biogenesis of a set of model IMPs covering most IMP structures possible has been studied in a variety of signal recognition particle (SRP), Sec and YidC mutant strains. We show that the assembly of the complete set of model IMPs is assisted (i.e. requires the aid of proteinaceous factors), and that the requirements for assembly of the model IMPs into the inner membrane differ significantly from each other. This indicates that IMP assembly is much more versatile than previously thought.


Assuntos
Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Proteínas de Membrana/biossíntese , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Sequência de Bases , Membrana Celular/química , Membrana Celular/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Mutação , Canais de Translocação SEC , Proteínas SecA , Partícula de Reconhecimento de Sinal/biossíntese , Partícula de Reconhecimento de Sinal/genética
16.
J Bacteriol ; 184(10): 2642-53, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11976293

RESUMO

The Ffh protein of Escherichia coli is a 48-kDa polypeptide that is homologous to the SRP54 subunit of the eukaryotic signal recognition particle (SRP). Efforts to understand the function of Ffh in bacteria have depended largely on the use of E. coli strains that allow depletion of the wild-type gene product. As an alternative approach to studying Ffh, a temperature-sensitive ffh mutant was isolated. The ffh-10(Ts) mutation results in two amino acid changes in conserved regions of the Ffh protein, and characterization of the mutant revealed that the cells rapidly lose viability at the nonpermissive temperature of 42 degrees C as well as show reduced growth at the permissive temperature of 30 degrees C. While the ffh mutant is defective in insertion of inner membrane proteins, the export of proteins with cleavable signal sequences is not impaired. The mutant also shows elevated expression of heat shock proteins and accumulates insoluble proteins, especially at 42 degrees C. It was further observed that the temperature sensitivity of the ffh mutant was suppressed by overproduction of 4.5S RNA, the RNA component of the bacterial SRP, by stabilizing the thermolabile protein. Collectively, these results are consistent with a model in which Ffh is required only for localization of proteins integral to the cytoplasmic membrane and suggest new genetic approaches to the study of how the structure of the SRP contributes to its function.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Partícula de Reconhecimento de Sinal/fisiologia , Alelos , Proteínas de Bactérias/análise , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/análise , Proteínas de Membrana/metabolismo , Mutação , RNA Bacteriano , RNA Ribossômico/biossíntese , Partícula de Reconhecimento de Sinal/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...